Tag: Combinatorics

Category and Measure Infinite Combinatorics, Topology and Groups


Free Download Category and Measure: Infinite Combinatorics, Topology and Groups
English | 2025 | ISBN: 0521196078 | 347 Pages | PDF | 5.4 MB
Topological spaces in general, and the real numbers in particular, have the characteristic of exhibiting a ‘continuity structure’, one that can be examined from the vantage point of Baire category or of Lebesgue measure. Though they are in some sense dual, work over the last half-century has shown that it is the former, topological view, that has pride of place since it reveals a much richer structure that draws from, and gives back to, areas such as analytic sets, infinite games, probability, infinite combinatorics, descriptive set theory and topology. Keeping prerequisites to a minimum, the authors provide a new exposition and synthesis of the extensive mathematical theory needed to understand the subject’s current state of knowledge, and they complement their presentation with a thorough bibliography of source material and pointers to further work. The result is a book that will be the standard reference for all researchers in the area.

(more…)

Introduction to Enumerative and Analytic Combinatorics (3rd Edition)


Free Download Introduction to Enumerative and Analytic Combinatorics
English | 2025 | ISBN: 1032302704 | 567 Pages | PDF EPUB (True) | 16 MB
This award-winning textbook targets the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The author’s goal is to make combinatorics more accessible to encourage student interest and to expand the number of students studying this rapidly expanding field.

(more…)

Computing and Combinatorics Second Annual International Conference, COCOON ’96 Hong Kong, June 17-19, 1996 Proceedings


Free Download Computing and Combinatorics: Second Annual International Conference, COCOON ’96 Hong Kong, June 17-19, 1996 Proceedings By Matthew Andrews, Michel X. Goemans, Lisa Zhang (auth.), Jin-Yi Cai, Chak Kuen Wong (eds.)
1996 | 430 Pages | ISBN: 3540613323 | PDF | 7 MB
This book constitutes the proceedings of the Second Annual International Conference on Computing and Combinatorics, COCOON ’96, held in June 1996 in Hong Kong.The 44 papers presented in the book in revised version were carefully selected from a total of 82 submissions. They describe state-of-the-art research results from various areas of theoretical computer science, combinatorics related to computing, and experimental analysis of algorithms; computational graph theory, computational geometry, and networking issues are particularly well-presented.

(more…)

Combinatorics and Computer Science 8th Franco-Japanese and 4th Franco-Chinese Conference Brest, France, July 3-5, 1995 Selecte


Free Download Combinatorics and Computer Science: 8th Franco-Japanese and 4th Franco-Chinese Conference Brest, France, July 3-5, 1995 Selected Papers By Bor-Liang Chen, Ming-Tat Ko, Ko-Wei Lih (auth.), Michel Deza, Reinhardt Euler, Ioannis Manoussakis (eds.)
1996 | 426 Pages | ISBN: 3540615768 | PDF | 7 MB
This book presents a collection of 33 strictly refereed full papers on combinatorics and computer science; these papers have been selected from the 54 papers accepted for presentation at the joint 8th Franco-Japanese and 4th Franco-Chinese Conference on Combinatorics in Computer Science, CCS ’96, held in Brest, France in July 1995.The papers included in the book have been contributed by authors from 10 countries; they are organized in sections entitled graph theory, combinatorial optimization, selected topics, and parallel and distributed computing.

(more…)

Mathematics via Problems Part 3 Combinatorics


Free Download Mikhail B. Skopenkov, "Mathematics via Problems: Part 3: Combinatorics"
English | ISBN: 1470460106 | 2023 | 197 pages | PDF | 7 MB
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material that is not standard in the school curriculum are included. To help students that might be unfamiliar with new material, problems are carefully arranged to provide gradual introduction into each subject. Problems are often accompanied by hints and/or complete solutions. The book is based on classes taught by the authors at different times at the Independent University of Moscow, at a number of Moscow schools and math circles, and at various summer schools. It can be used by high school students and undergraduates, their teachers, and organizers of summer camps and math circles. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, SLMath (formerly MSRI) and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.

(more…)

Combinatorics, Graph Theory and Computing


Free Download Combinatorics, Graph Theory and Computing
English | 2024 | ISBN: 3031621654 | 429 Pages | PDF EPUB (True) | 48 MB
This proceedings volume compiles selected, revised papers presented at the 53rd SouthEastern International Conference on Combinatorics, Graph Theory, and Computing (SEICCGTC 2022), which took place at Florida Atlantic University in Boca Raton, USA, from March 7th to 11th, 2022.

(more…)

Independence Theory in Combinatorics An Introductory Account with Applications to Graphs and Transversals


Free Download Independence Theory in Combinatorics: An Introductory Account with Applications to Graphs and Transversals by Victor Bryant , Hazel Perfect
English | PDF | 1980 | 152 Pages | ISBN : 0412224305 | 9.7 MB
Combinatorics may very loosely be described as that branch of mathematics which is concerned with the problems of arranging objects in accordance with various imposed constraints. It covers a wide range of ideas and because of its fundamental nature it has applications throughout mathematics. Among the well-established areas of combinatorics may now be included the studies of graphs and networks, block designs, games, transversals, and enumeration problem s concerning permutations and combinations, from which the subject earned its title, as weil as the theory of independence spaces (or matroids). Along this broad front,various central themes link together the very diverse ideas. The theme which we introduce in this book is that of the abstract concept of independence. Here the reason for the abstraction is to unify; and, as we sh all see, this unification pays off handsomely with applications and illuminating sidelights in a wide variety of combinatorial situations. The study of combinatorics in general, and independence theory in particular, accounts for a considerable amount of space in the mathematical journais. For the most part, however, the books on abstract independence so far written are at an advanced level, ·whereas the purpose of our short book is to provide an elementary in troduction to the subject.

(more…)

A Course in Combinatorics and Graphs


Free Download A Course in Combinatorics and Graphs by Simeon Ball , Oriol Serra
English | PDF EPUB (True) | 2024 | 180 Pages | ISBN : 3031553837 | 17.5 MB
This compact textbook consists of lecture notes given as a fourth-year undergraduate course of the mathematics degree at the Universitat Politècnica de Catalunya, including topics in enumerative combinatorics, finite geometry, and graph theory. This text covers a single-semester course and is aimed at advanced undergraduates and masters-level students. Each chapter is intended to be covered in 6-8 hours of classes, which includes time to solve the exercises. The text is also ideally suited for independent study. Some hints are given to help solve the exercises and if the exercise has a numerical solution, then this is given. The material covered allows the reader with a rudimentary knowledge of discrete mathematics to acquire an advanced level on all aspects of combinatorics, from enumeration, through finite geometries to graph theory.

(more…)