Tag: Curves

The Moduli Space of Curves


Free Download The Moduli Space of Curves By Lucia Caporaso (auth.), Robbert H. Dijkgraaf, Carel F. Faber, Gerard B. M. van der Geer (eds.)
1995 | 563 Pages | ISBN: 1461287146 | PDF | 42 MB
The moduli space Mgof curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.Leading experts in the field explore in this volume both the structure of the moduli space of curves and its relationship with physics through quantum cohomology. Altogether, this is a lively volume that testifies to the ferment in the field and gives an excellent view of the state of the art for both mathematicians and theoretical physicists. It is a persuasive example of the famous Wignes comment, and its converse, on "the unreasonable effectiveness of mathematics in the natural science."Witteen’s conjecture in 1990 describing the intersection behavior of tautological classes in the cohomology of Mg arose directly from string theory. Shortly thereafter a stunning proof was provided by Kontsevich who, in this volume, describes his solution to the problem of counting rational curves on certain algebraic varieties and includes numerous suggestions for further development. The same problem is given an elegant treatment in a paper by Manin. There follows a number of contributions to the geometry, cohomology, and arithmetic of the moduli spaces of curves. In addition, several contributors address quantum cohomology and conformal field theory.

(more…)

Eslimi Persian Curves


Free Download Eslimi: Persian Curves (Draw Easy, Book 2) by Hamed Rahnama
English | May 14, 2020 | ASIN: B0883569V8, ISBN: | True AZW3 | 64 pages | 7 MB
The step by step tutorial to draw Persian curvature ornament also known as Arabesque for beginners.

(more…)

Algebraic Curves An Introduction to Algebraic Geometry


Free Download Algebraic Curves: An Introduction to Algebraic Geometry By William Fulton
2008 | 132 Pages | ISBN: 0805330828 | PDF | 1 MB
PrefaceThird Preface, 2008This text has been out of print for several years, with the author holding copyrights.Since I continue to hear from young algebraic geometers who used this astheir first text, I am glad now to make this edition available without charge to anyoneinterested. I am most grateful to Kwankyu Lee for making a careful LaTeX version,which was the basis of this edition; thanks also to Eugene Eisenstein for help withthe graphics.As in 1989, I have managed to resist making sweeping changes. I thank all whohave sent corrections to earlier versions, especially Grzegorz Bobi´nski for the mostrecent and thorough list. It is inevitable that this conversion has introduced somenew errors, and I and future readers will be grateful if you will send any errors youfind to me at [email protected] Preface, 1989When this book first appeared, there were few texts available to a novice in modernalgebraic geometry. Since then many introductory treatises have appeared, includingexcellent texts by Shafarevich,Mumford,Hartshorne, Griffiths-Harris, Kunz,Clemens, Iitaka, Brieskorn-Knörrer, and Arbarello-Cornalba-Griffiths-Harris.The past two decades have also seen a good deal of growth in our understandingof the topics covered in this text: linear series on curves, intersection theory, andthe Riemann-Roch problem. It has been tempting to rewrite the book to reflect thisprogress, but it does not seem possible to do so without abandoning its elementarycharacter and destroying its original purpose: to introduce students with a little algebrabackground to a few of the ideas of algebraic geometry and to help them gainsome appreciation both for algebraic geometry and for origins and applications ofmany of the notions of commutative algebra. If working through the book and itsexercises helps prepare a reader for any of the texts mentioned above, that will be anadded benefit.PREFACEFirst Preface, 1969Although algebraic geometry is a highly developed and thriving field of mathematics,it is notoriously difficult for the beginner to make his way into the subject.There are several texts on an undergraduate level that give an excellent treatment ofthe classical theory of plane curves, but these do not prepare the student adequatelyfor modern algebraic geometry. On the other hand, most books with a modern approachdemand considerable background in algebra and topology, often the equivalentof a year or more of graduate study. The aim of these notes is to develop thetheory of algebraic curves from the viewpoint of modern algebraic geometry, butwithout excessive prerequisites.We have assumed that the reader is familiar with some basic properties of rings,ideals, and polynomials, such as is often covered in a one-semester course in modernalgebra; additional commutative algebra is developed in later sections. Chapter1 begins with a summary of the facts we need from algebra. The rest of the chapteris concerned with basic properties of affine algebraic sets; we have given Zariski’sproof of the important Nullstellensatz.The coordinate ring, function field, and local rings of an affine variety are studiedin Chapter 2. As in any modern treatment of algebraic geometry, they play a fundamentalrole in our preparation. The general study of affine and projective varietiesis continued in Chapters 4 and 6, but only as far as necessary for our study of curves.Chapter 3 considers affine plane curves. The classical definition of the multiplicityof a point on a curve is shown to depend only on the local ring of the curve at thepoint. The intersection number of two plane curves at a point is characterized by itsproperties, and a definition in terms of a certain residue class ring of a local ring isshown to have these properties. Bézout’s Theorem and Max Noether’s FundamentalTheorem are the subject of Chapter 5. (Anyone familiar with the cohomology ofprojective varieties will recognize that this cohomology is implicit in our proofs.)In Chapter 7 the nonsingular model of a curve is constructed by means of blowingup points, and the correspondence between algebraic function fields on onevariable and nonsingular projective curves is established. In the concluding chapterthe algebraic approach of Chevalley is combined with the geometric reasoning ofBrill and Noether to prove the Riemann-Roch Theorem.These notes are from a course taught to Juniors at Brandeis University in 1967-68. The course was repeated (assuming all the algebra) to a group of graduate studentsduring the intensive week at the end of the Spring semester. We have retainedan essential feature of these courses by including several hundred problems. The resultsof the starred problems are used freely in the text, while the others range fromexercises to applications and extensions of the theory.From Chapter 3 on, k denotes a fixed algebraically closed field. Whenever convenient(including without comment many of the problems) we have assumed k tobe of characteristic zero. The minor adjustments necessary to extend the theory toarbitrary characteristic are discussed in an appendix.Thanks are due to Richard Weiss, a student in the course, for sharing the taskof writing the notes. He corrected many errors and improved the clarity of the text.Professor PaulMonsky provided several helpful suggestions as I taught the course."Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie.Je n’ai mois point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit querésoudre un probleme de géométrie par les équations, c’étoit jouer un air en tournantune manivelle. La premiere fois que je trouvai par le calcul que le carré d’unbinôme étoit composé du carré de chacune de ses parties, et du double produit del’une par l’autre, malgré la justesse de ma multiplication, je n’en voulus rien croirejusqu’à ce que j’eusse fai la figure. Ce n’étoit pas que je n’eusse un grand goût pourl’algèbre en n’y considérant que la quantité abstraite; mais appliquée a l’étendue, jevoulois voir l’opération sur les lignes; autrement je n’y comprenois plus rien."Les Confessions de J.-J. Rousseau

(more…)

Higher-Order Growth Curves and Mixture Modeling with Mplus A Practical Guide


Free Download Kandauda Wickrama, "Higher-Order Growth Curves and Mixture Modeling with Mplus: A Practical Guide "
English | ISBN: 1138925152 | 2016 | 326 pages | EPUB | 21 MB
This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web.

(more…)

Ramified Surfaces On Branch Curves and Algebraic Geometry in the 20th Century (Frontiers in the History of Science)


Free Download Ramified Surfaces: On Branch Curves and Algebraic Geometry in the 20th Century (Frontiers in the History of Science) by Michael Friedman
English | September 28, 2022 | ISBN: 3031057198 | 264 pages | MOBI | 6.82 Mb
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon’s program of braid monodromy factorization.By focusing on how the research on one specific curve changed during the 20th century, the author provides insights concerning the dynamics of epistemic objects and configurations of mathematical research. It is in this sense that the book offers to take the branch curve as a cross-section through the history of algebraic geometry of the 20th century, considering this curve as an intersection of several research approaches and methods.

(more…)

Focus On Curves and Surfaces


Free Download Focus On Curves and Surfaces by Kelly Dempski
English | 2002 | ISBN: 159200007X | 280 Pages | DJVU | 13.2 MB
"Focus On Curves and Surfaces" gives you the tools you need to build exciting, high-detail characters and backgrounds for your games!

(more…)