Tag: Finsler

Finsler and Lagrange Geometries Proceedings of a Conference held on August 26-31, Iaşi, Romania


Free Download Finsler and Lagrange Geometries: Proceedings of a Conference held on August 26-31, Iaşi, Romania By Nicoleta Aldea (auth.), M. Anastasiei, P. L. Antonelli (eds.)
2003 | 324 Pages | ISBN: 9048163250 | PDF | 10 MB
In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra§ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia§i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia§i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia§i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications.

(more…)

Finsler Set Theory Platonism and Circularity Translation of Paul Finsler’s papers on set theory with introductory comments


Free Download Finsler Set Theory: Platonism and Circularity: Translation of Paul Finsler’s papers on set theory with introductory comments By David Booth, Renatus Ziegler (auth.), David Booth, Renatus Ziegler (eds.)
1996 | 282 Pages | ISBN: 3034898762 | PDF | 6 MB
Finsler’s papers on set theory are presented, here for the first time in English translation, in three parts, and each is preceded by an introduction to the field written by the editors. In the philosophical part of his work Finsler develops his approach to the paradoxes, his attitude toward formalized theories and his defense of Platonism in mathematics. He insisted on the existence of a conceptual realm within mathematics that transcends formal systems. From the foundational point of view, Finsler’s set theory contains a strengthened criterion for set identity and a coinductive specification of the universe of sets. The notion of the class of circle free sets introduced by Finsler is potentially a very fertile one although not very widespread today. Combinatorially, Finsler considers sets as generalized numbers to which one may apply arithmetical techniques. The introduction to this third section of the book extends Finsler’s theory to non-well-founded sets. The present volume makes Finsler’s papers on set theory accessible at long last to a wider group of mathematicians, philosophers and historians of science. A technical background is not necessary to appreciate the satisfying interplay of philosophical and mathematical ideas that characterizes this work.

(more…)

An Introduction to Riemann-Finsler Geometry


Free Download An Introduction to Riemann-Finsler Geometry by D. Bao , S.-S. Chern , Z. Shen
English | PDF | 2000 | 453 Pages | ISBN : 038798948X | 55.4 MB
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe?

(more…)