Tag: Flow

Three-Dimensional Attached Viscous Flow Basic Principles and Theoretical Foundations


Free Download Three-Dimensional Attached Viscous Flow: Basic Principles and Theoretical Foundations By Ernst Heinrich Hirschel, Jean Cousteix, Wilhelm Kordulla (auth.)
2014 | 391 Pages | ISBN: 3642413773 | PDF | 28 MB
Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases.This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.

(more…)

The Positive Pianist How Flow Can Bring Passion to Practice and Performance


Free Download Thomas J. Parente, "The Positive Pianist: How Flow Can Bring Passion to Practice and Performance"
English | ISBN: 0199316600 | 2015 | 152 pages | EPUB | 8 MB
In The Positive Pianist: How Flow Can Bring Passion to Practice and Performance, author Thomas J. Parente applies the concept of flow to the practice of piano playing, demonstrating how student musicians can experience enjoyment and confidence from succeeding at something that challenges them to an engaging level. By using Mihaly Csikszentmihalyi’s theory of flow to musical performance, Parente shows that linking productivity and enjoyment in piano playing has a positive impact on students, motivating them to practice more in order to experience flow again; this creates optimal learning conditions for piano practicing. As the chapters progress, Parente shows students how to evaluate their own progress and offers teachers the tools to impart on their students an optimal practice method: one informed by flow. Parente argues for an objective, goal-oriented backdrop that will lead piano students to achieve greater confidence, accuracy, and musicality.

(more…)

Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics


Free Download Multiphase Flow Dynamics 5: Nuclear Thermal Hydraulics By Nikolay Ivanov Kolev
2011 | 852 Pages | ISBN: 364220600X | PDF | 24 MB
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Basics of designing of steam generators, moisture separators and emergency condensers are presented. Methods for analyzing a complex pipe network flows with components like pumps, valves etc. are also presented. Methods for analysis of important aspects of the severe accidents like melt-water interactions, external cooling and cooling of layers of molten nuclear reactor material are presented. Valuable sets of thermo-physical and transport properties for severe accident analysis are presented for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics.This present second edition includes various updates, extensions, improvements and corrections.This present second edition includes various updates, extensions, improvements and corrections.

(more…)

Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties


Free Download Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties By Nikolay Ivanov Kolev
2011 | 348 Pages | ISBN: 3642207480 | PDF | 5 MB
The present Volume 4 of the successful monograh package "Multiphase Flow Dynamics"is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice.In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided.This new second edition includes various updates, extensions, improvements and corrections.In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided.This new second edition includes various updates, extensions, improvements and corrections.

(more…)

Multiphase Flow Dynamics 3 Thermal Interactions


Free Download Multiphase Flow Dynamics 3: Thermal Interactions By Nikolay Ivanov Kolev
2011 | 700 Pages | ISBN: 3642213715 | PDF | 14 MB
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package "Multiphase Flow Daynmics" contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections."The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,"BERND PLATZER, ZAAMIn the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections."The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,"BERND PLATZER, ZAAM

(more…)

Multiphase Flow Dynamics 1 Fundamentals


Free Download Multiphase Flow Dynamics 1: Fundamentals By Nikolay Ivanov Kolev
2011 | 824 Pages | ISBN: 3642206042 | PDF | 11 MB
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package "Multiphase Flow Daynmics" contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections."The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended."BERND PLATZER, ZAAMIn the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections."The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended."BERND PLATZER, ZAAM

(more…)

Geothermics Heat Flow in the Lithosphere


Free Download Geothermics: Heat Flow in the Lithosphere By Vincenzo Pasquale, Massimo Verdoya, Paolo Chiozzi (auth.)
2014 | 119 Pages | ISBN: 3319025104 | PDF | 5 MB
After a brief review of global tectonics and the structure of the crust and upper mantle, the basic relations of conductive heat transport and the rock thermal properties are introduced as well as the various methods for measuring thermal conductivity and heat generation due to the decay of radioactive elements. The authors analyze geothermal flow and the thermal state of the lithosphere and deep interior and discuss the fundamental problems related to the formation, upwelling mechanisms, solidification and cooling of magmas. The text presents analytical methods that allow us to gain information on heat and groundwater flow from the analyses of temperature-depth data. It also provides ample data and examples to facilitate understanding of the different topics. This book is useful to researchers and graduate students interested in pure and applied geothermics.

(more…)

River Flow 2022


Free Download River Flow 2022
English | 2024 | ISBN: 1032346132 | 1089 Pages | PDF (True) | 888 MB
River Flow 2022 provides an overview of the latest experimental, theoretical and computational findings on fundamental river flow and transport processes, river morphology and morphodynamics, while covering also issues related to the effects of hydraulic structures on flow regime, river morphology and ecology; sustainable river engineering practices (including stream restoration and re-naturalization); and effects of climate change including extreme flood events. The book presents the state-of-the-art in river research and engineering, and is aimed at academics and practitioners in hydraulics, hydrology and environmental engineering.

(more…)

Leben im Flow Entfalte dein volles Potenzial – Entdecke dein Löwenherz und lebe deine Schöpferkraft


Free Download Leben im Flow : Entfalte dein volles Potenzial – Entdecke dein Löwenherz und lebe deine Schöpferkraft
Deutsch | 2024 | ASIN: B0DCK2S4FL | 158 Pages | EPUB | 1.2 MB
Dieses Buch ist eine Einladung, dein wahres Selbst zu entdecken und deine innere Stärke zu entfesseln. Elke Rosenfelder möchte dir zeigen, wie du deine Schöpferkraft leben und ein Leben im Flow erreichen kannst. Ziel ist es, dir Werkzeuge und Inspirationen an die Hand zu geben, damit du ein erfülltes und freudvolles Leben führen kannst.

(more…)