Tag: Viscous

Theory and Applications of Viscous Fluid Flows


Free Download Theory and Applications of Viscous Fluid Flows By Radyadour Kh. Zeytounian (auth.)
2004 | 488 Pages | ISBN: 3642078893 | PDF | 11 MB
The purpose of Theory and Applications of Viscous Fluid Flows is to close the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. After a general introduction, each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work. The book will benefit beginning graduate students and young researchers interested in a rational and systematic account of various theoretical and mathematical aspects of viscous fluid flow phenomena, as well as their modelling in relation to practical viscous and heat conducting problems. This volume complements, but is independent of, Zeytounian’s Theory and Applications of Nonviscous Fluid Flows.

(more…)

Laminar Viscous Flow


Free Download Laminar Viscous Flow By V. N. Constantinescu (auth.)
1995 | 488 Pages | ISBN: 1461287065 | PDF | 60 MB
Mechanical engineering, an engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the following page of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. Professor Winer, the consulting editor for tribology, and I are pleased to present this volume of the series: Laminar Viscous Flow, by Professor Constantinescu. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts.

(more…)

Three-Dimensional Attached Viscous Flow Basic Principles and Theoretical Foundations


Free Download Three-Dimensional Attached Viscous Flow: Basic Principles and Theoretical Foundations By Ernst Heinrich Hirschel, Jean Cousteix, Wilhelm Kordulla (auth.)
2014 | 391 Pages | ISBN: 3642413773 | PDF | 28 MB
Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases.This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.

(more…)

Computation of Viscous Incompressible Flows


Free Download Computation of Viscous Incompressible Flows by Dochan Kwak , Cetin C. Kiris
English | PDF (True) | 2011 | 294 Pages | ISBN : 9400701926 | 15.3 MB
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors’ field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.

(more…)